Friday 30 September 2016

New devices that emulate human biological synapses

Engineers at the University of Massachusetts Amherst are leading a research team that is developing a new type of nanodevice for computer microprocessors that can mimic the functioning of a biological synapse—the place where a signal passes from one nerve cell to another in the body. The work is featured in the advance online publication of Nature Materials.
Such neuromorphic computing in which microprocessors are configured more like human brains is one of the most promising transformative computing technologies currently under study.
J. Joshua Yang and Qiangfei Xia are professors in the electrical and computer engineering department in the UMass Amherst College of Engineering. Yang describes the research as part of collaborative work on a new type of memristive device.
Memristive devices are electrical resistance switches that can alter their resistance based on the history of applied voltage and current. These devices can store and process information and offer several key performance characteristics that exceed conventional integrated circuit technology.
“Memristors have become a leading candidate to enable neuromorphic computing by reproducing the functions in biological synapses and neurons in a neural network system, while providing advantages in energy and size,” the researchers say.
Neuromorphic computing—meaning microprocessors configured more like human brains than like traditional computer chips—is one of the most promising transformative computing technologies currently under intensive study. Xia says, “This work opens a new avenue of neuromorphic computing hardware based on memristors.”

Read More

No comments:

Post a Comment